MULTI-DIMENSIONAL IMAGING USING O-ARM IN TREATMENT OF SPINAL FRACTURES

Dr Sumit Sinha MS, DNB, MNAMS, MCh
Fellow Fujita Health University, Japan,
Faculty, Advance Trauma Life Support,
Associate Professor, Department of neurosurgery,
AIIMS and JPNA Trauma center, New Delhi
Multidimensional imaging in spinal fractures

• Pedicle screw insertion—easy and safe where anatomical landmarks are clear—AP/fluoroscopy enough.

• In contrast to the cranial navigation navigation of the vertebral column is complicated by the fact that the spine is a flexible structure.
Multidimensional imaging in spinal fractures

Indications of the O-Arm

• pathologies of difficult navigation (degenerative spine such as scoliosis)
• anatomic Landmarks difficult to identify
• Methodological limitations of fluoroscopy-(at the junction of the upper spine CT/T, or in very obese).
Multidimensional imaging in spinal fractures

A unique platform for intra-operative Imaging

- 2-D Fluoro with Memory
- 3-D Reconstructions
- Lateral patient access
- Robotic positioning
Multidimensional imaging in spinal fractures
Multidimensional imaging in spinal fractures

- Digital Display of the highest image resolution, displaying 30 "diagonal flat aspect ratio 16:9 User control of imaging display functions from the viewing station or a handheld, wireless mouse, sterile
Multidimensional imaging in spinal fractures

• Large field of view without distortion
• High resolution 40cm x 30cm flat panel detector

3 times the area of a 9” image intensifier (standard c-arm)

6 times the 3-D volume derived from a 9” image intensifier
2-D Imaging lumbar.
2-D Imaging lumbar spine with screws
Multidimensional imaging in spinal fractures

- Streamlined imaging for increased OR efficiency
 - Lateral Patient Access
 - No fixed room – O-arm® can be used during multiple cases
- 3-D Image created in operative position
- Obtain post-op 3-D scan before closing patient
- Fast Scan Time
 - 391 images over 360° in 13 seconds (SD)
 - 750 images over 360° in 13 seconds (HD)
3-d standard cervical Imaging
3-d standard cervical Fusion
Pattern 3-d lumbar fusion.
Pattern 3-d lumbar fusion.
Multidimensional imaging in spinal fractures

• High Definition, 3-D Imaging (HD3D)
 – 750 Images over 360° in 13 seconds
 – Higher resolution images = increased visibility
 – < 45 seconds to acquire and reconstruct data

• Oblique Slicing
 – Ability to scroll through anatomy from any angle
HD3D Cervical Imaging
HD3D Lumbar Imaging
HD3D Lumbar Sacral Imaging
Multidimensional imaging in spinal fractures

• **Maximum Intensity Projection (MIP) View**
 – Transparent 3D reconstruction

• **Surface Rendering**
 – Surface 3D reconstruction

• **Collimated 3D Spin**
 – Reduced radiation exposure during 3D scan acquisition
Multidimensional imaging in spinal fractures

MIP - Cervical Thoracic Junction
Multidimensional imaging in spinal fractures

MIP – Cervical Fusion

Surface Rendering View – Cervical Fusion
Multidimensional imaging in spinal fractures

The O-Arm ® + image guided surgery
Multidimensional imaging in spinal fractures

Welding images and imaging guidance
Multidimensional imaging
in spinal fractures

Select Surgeon
Select Procedure
Equipment and instruments are auto-checked
Instruments per surgeon per procedure

Navigate
The O-ARM® imaging system represents the seamless integration of intra-operative imaging with image guided surgery.

3-D image data set is automatically transferred to the STEALTHSTATION® TREON® and registered to the patient.
Multidimensional imaging in spinal fractures

- Tracker permanently mounted and powered by the O-ARM® System - eliminating a manual on/off step
- System detects left vs. right by the unique geometry of the active LED spheres
Multidimensional imaging in spinal fractures

Image Quality
- No Correction for Distortion
- Ultra-High Resolution
- Higher X-ray Power
- Large Field of View
- Fast Scan Time
 - 2D and 3D
 - No ‘C’ Flex

Time
- Decreased Imaging Time in OR
- Robotic Re-Positioning

Safety
- Fast scan time: only required to suspend respirations for 13 seconds during image acquisition
- Moving components enclosed in gantry - no movement in free space

Sterility
- No In-and-Out of Sterile Field
- Easy 1-time Draping System

Dose
- Decreased Dose to Surgeon
- Robotic Re-Positioning
Multidimensional imaging in spinal fractures

JPNATC Data
Total Surgeries- 196
- Odontoid #–25
- Hangmann #–15
- Subaxial C-Spine #– 35
- Upper D #–57
- Lower D #–64
Multidimensional imaging in spinal fractures

- O-arm system (Medtronic) allowed 2D and 3D imaging in OR-distortion-free digital flat-panel technology.
- 3D image acquired in 13 seconds—total of 392 single images recorded in a full 360° rotation.
- The O-arm gantry positioned from lateral side over patient before being closed. The patient was placed in the isocenter of O-arm.
- Patients placed prone/Supine.
- After sterile draping of O-arm—skin incision was made.
- The reference frame for spinal navigation was attached either to a spinous process after detachment of the spinal musculature or to the posterior superior iliac spine in percutaneous cases.
- A StealthStation Treon plus system (Medtronic) was used for navigation.
• At beginning of surgery—first 3D scan is acquired—images reconstructed automatically,
• 3D reconstructions appeared on the screen of O-arm viewing station instantly.
• Data set automatically transferred to the StealthStation, and the navigation-assisted insertion of polyaxial pedicle screws) begins without the need for any manual registration, minimizing the time for the setup of the navigation and avoiding possible errors from manual registration.
• This procedure allowed the navigation of a minimum of 4 spinal levels at the lumbar spine.
• In open cases, after detachment of the musculature, a rigid navigated awl followed by a navigable pedicle probe used to open the pedicle.
• In minimally invasive cases, a sextant system (Medtronic) used.
• A sure trak universal adapter (Medtronic) attached to the Jamshidi hollow needle to open the pedicle with help of navigation.
• The correct trajectory of the Jamshidi needle found by putting a 6-cm virtual extension on computerized image of needle.
• Once the trajectory found, needle punctured directly through pedicle into vertebral body.
• A long K-wire placed through hollow needle.
• Skin incision enlarged to allow muscle dilators to be placed over K-wire.
• A navigable hollow tab was used, followed by the hollow pedicle screw in the sextant’s screw extender. After screw placement- K-wire removed.
• percutaneous_screws
Multidimensional imaging in spinal fractures

Real-time guidance intra-operative without continued exposure to radiation
Multidimensional imaging in spinal fractures

Spinal fixation percutaneous
<table>
<thead>
<tr>
<th></th>
<th>Fluoroscopy-assisted Preoperative CT-based CaIG</th>
<th>Intraoperative Iso-C-based CaIG</th>
<th>Intraoperative O-arm-based CaIG</th>
</tr>
</thead>
<tbody>
<tr>
<td>Advantages</td>
<td>↓Time</td>
<td>↑Accuracy</td>
<td>↑Accuracy*</td>
</tr>
<tr>
<td></td>
<td>↓Cost</td>
<td>↓Surgeon radiation exposure</td>
<td>↓Surgeon radiation exposure</td>
</tr>
<tr>
<td></td>
<td></td>
<td>↓Time (versus preoperative CT-based CaIG)</td>
<td>↓Time (versus preoperative CT-based CaIG)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Can acquire intraoperative multi-planar images</td>
<td>Can acquire intraoperative multi-planar images</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Can act as a fluoroscope</td>
<td>Can act as a fluoroscope</td>
</tr>
<tr>
<td></td>
<td></td>
<td>↑Image quality (versus Iso-C-based CaIG)**</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>↑Field of view (more spinal segments can be imaged)**</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Robotic re-positioning to preprogrammed fluoroscopic views**</td>
<td></td>
</tr>
<tr>
<td>Disadvantages</td>
<td>↓Accuracy</td>
<td>↑Cost</td>
<td>↑↑Cost</td>
</tr>
<tr>
<td></td>
<td>↑Surgeon radiation exposure</td>
<td>↑Time (surgeon-derived registration)</td>
<td>↑↑↑Cost</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Ergonomics (O-arm is larger than a fluoroscope or Iso-C)</td>
</tr>
</tbody>
</table>
THANKYOU